Cause and Effect Relationship of Some Growth and Yield Traits in Cucumber (Cucumis sativus L.)
DOI:
https://doi.org/10.52878/ipsci.2021.1.1.5Keywords:
Association, correlation, path analysis, controlled greenhouse, fruit yield, cucumberAbstract
The effectiveness of a breeding program can usually be determined through the direction and size of the contribution of yield traits, whereas a proportional relevance of each trait is involved in its contribution towards yield. Practical knowledge of this phenomenon would aid in the decision-making process for the concurrent development of many traits in a breeding program. The present experimental investigations were carried out in the Alsayla area, Ibb Governorate in Yemen, from February to May 2021 with a set of thirteen cumber cultivars planted as a triplicated randomized complete blocked design (RCBD) under a protected greenhouse to examine the cause-effect relationship among growth, yield, and its contributing traits for cucumber. For the determination of the direct and indirect impact on yield, the path analysis was performed using genotypic correlation coefficients as input. Both objectives were studied for different characteristics like Vine length (m), Leaf Area (cm2), Fruit Weight (g), Total Soluble Solids (TSS), Fruit diameter (cm), and dry matter (%), as well as fruit yield plant-1 (g). Genotypic and phenotypic correlation results revealed that yield had a highly significant positive correlation with fruit weight, leaf area, fruit diameter, dry matter, TSS (Brix°), and the path coefficients for genetic correlation coefficients showed a positive direct effect. These traits should thus be prioritized in the selection process for developing cucumber varieties with high yield potential.
References
Afangideh, U., & Uyoh E. A. (2007) Genetic variability and correlation studies in some varieties of cucumber (Cucumis sativus L.). Jordan J Agric Sci 3: 376-384
Afangideh, U., Uyoh, E. A., Ittah, M., & Uko, A. E. (2005). Morphological characterization of some cultivars of cucumber (Cucumis sativus L.). Journal of Sustainable Tropical Agricultural Research, 14, 13-18.
Agahi, K., Fotokian, M. H., & Farshadfar, E. (2007). Correlation and path coefficient analysis for some yield-related traits in rice genotypes (Oryza sativa L.). Asian Journal of Plant Sciences.
Al-Jibouri, H. A., Miller, P. A., & Robinson H. F. (1958). Genotypic and environmental variances and covariances in an upland cross of inter-specific origin. Agron. J., 50: 633-636.
Bhaiya, R., Singh, V. B., Yadav, G. C., Kumar, Y., & Tiwari, D. (2020). Character association and path coefficient analysis of growth, yield, and its contributing traits in cucumber (Cucumis sativus L.). IJCS, 8(5), 431-433.
Chavan, B., Jawale L. N., & Shinde, A. V. (2020). Correlation and path analysis studies in finger millet for yield and yield contributing traits (Eleusine coracana L. Gaertn)." Int. J. Chem. Stud 8: 2911-2914.
Che, G., & Zhang, X. (2019). Molecular Basis of Cucumber Fruit Domestication.” Current Opinion in Plant Biology 47:38–46.
Chikezie, O. E., Peter, E.O., Christian, U.A., & Uche, P.C. (2016). Studies of phenotypic and genotypic variation in sixteen cucumber genotypes. Chilean Journal of Agricultural Research. 76(3):307-313.
Chomicki, G., Schaefer, H., & Renner, S. S. (2020). Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics, and archaeology. New Phytologist, 226(5), 1240-1255.
Cramer, C. S., & Wehner, T. C. (2000). Path analysis of correlation between fruit number and plant traits of cucumber populations. Hort. Sci., 35(4): 708-711.
Dewey, D. R., & K. & Lu, H. (1959). A correlation and path coefficient analysis of components of crested wheatgrass seed production. Agron. J. 51: 515-518.
Dofing, S. M., & Knight, C. W. (1992). Alternative model for path analysis of small-grain yield. Crop Sci. 32, 487—489.
FAOSTAT. (2021). Food and Agriculture Organization of the United Nations. Crop. Prod. Data 2021. Available online: http://www.fao. org/faostat/en/#data (accessed on 9 July 2021).
Fayeun, L. S., Odiyi, A. C., Makinde, S. C. O., & Aiyelari, O. P. (2012). Genetic variability and correlation studies in the fluted pumpkin (Telfairia occidentalis Hook F.). Journal of Plant Breeding and Crop Science, 4(10), 156-160.
Fisher, K. S., & Palmer, A. F. E. (1983). Maize. In: W. H. Smith, and S. J. Banata (eds), Symp. on Potential Productivity of Field Crops under Different Environments, 155—180. Int. Rice Res. Inst., Los Banos, Philippines.
Hassan, S. F., Iqbal, M. S., Rabbani, G., Shabbir, G., Riaz, M., & Noorka, I. R. (2013). Correlation and path analysis for yield and yield components in sunflower (Helianthus annus. L). African Journal of Biotechnology, 12(16).
Islam, M.S., Khan, S., Khanam, D., Malek, M.A., & Mosiul Hoque A.M.M. (1993). Genetic variability and path analysis in cucumber (Cucumis sativus L.) Bang. J. Pl. Breed. Genet., 6: 45-51.
Khan, M. R. A., Mahmud, F., Reza, M. A., Mahbub, M. M., Shirazy, B. J., & Rahman, M. M. (2017). Genetic diversity, correlation, and path analysis for yield and yield components of pea (Pisum sativum L.). World Journal of Agricultural Sciences, 13(1), 11-16.
Kumar, S., Kumar, R., Gupta R.K., & Sephia, R. (2011). Studies on correlation and path coefficient analysis for yield and its contributing traits in cucumber. Crop Improvement. 38(1):18-23.
Kumar, R., Munshi, A. D., Behera, T. K., Jat, G. S., Choudhary, H., Singh, M., & Talukdar, A. (2020). Genetic diversity of cucumber (Cucumis sativus) accessions differing in quantitative traits and microsatellite markers. Indian Journal of Agricultural Sciences, 90(11), 2161-7.
Kumari, M., Ram, C. N., Nath, S., Maurya, N., & Kumar, S. (2020). Studies on genetic variability, heritability and genetic advance in cucumber (Cucumis sativus). Journal of Pharmacognosy and Phytochemistry, 9(5), 481-484.
Lungu, M. D (1978) Classifying winter wheat environments into Adaptive zones as a basis for recommending a Reduction in the number of International Winter Wheat Performance Nursery Test sites. MSc. Thesis, University of Nebraska, Lincoln.
Machikowa, T., & Laosuwan, P. (2011). Path coefficient analysis for yield of early maturing soybean. Songklanakarin Journal of Science & Technology, 33(4).
Manoharan, V., Ramalingam, S., & Kalaimani, S. (1990). Genetic advance and path analysis in the F-2 generation of an intra subspecific cross in groundnut. Indian J. Genet, 50, 244-247.
McGiffen, M.E., Pantone, D.J., & Masiunas, J.B. (1994) Path analysis of tomato yield components in relation to competition with black and eastern black nightshade. Journal of American Society of. Horticultural. Science. 119:6-11.
Naegele, R. P., & Wehner, T. C. (2016). Genetic resources of cucumber. In Genetics and genomics of Cucurbitaceae (pp. 61-86). Springer, Cham.
Suman, N., Thapa, U., Banerjee, S., & Mondal, R. (2019) Character association and path analysis for fruit yield and it’s contributing traits in cucumber genotypes (Cucumis sativus L.) under naturally ventilated polyhouse during off season. J Pharmacogn Phytochem 8(6):2439-2442.
Ndukauba, J., Nwofia, G. E., Okocha, P. I., & Ene-Obong, E. E. (2015). Variability in egusi-melon genotypes (Citrullus lanatus [Thumb] Matsum and Nakai) in derived savannah environment in South-Eastern Nigeria. International Journal of Plant Research, 5(1), 19-26.
Okonmah, L. U. (2011). Effects of Different Types of Staking and Their Cost Effectiveness on the Growth, Yield and Yield Components of Cucumber (Cucumis Sativa L.).” International Journal of AgriScience 1(5):290–95.
Okoye, F. I., & Eneobong, E. E. (1992). Genetic Variability and Correlation Studies in the African Yam Bean (Sphenostylis stenocarpa). Nigerian Journal of Botany. 5:75-83.
Prabhu, R., Manivannan, N., Mothilal, A., & Ibrahim, S. M. (2014). Magnitude and direction of association for Yield and Yield attributes in groundnut (Arachis hypogaea L.). Electronic Journal of Plant Breeding, 5(4), 824-827.
Ram, B., & Hemarpabha G. (1991). Character inter relationships in cultivar x species progenies in sugarcane. Indian J. Genet. 51, 89— 95.
Ramesha, M. S., Patil, S. J., Goud, J. V., & Patil, S. S. (1990). Correlation combining ability and heterosis studies on husk number and shank length in maize. Indian J. Genet. 50, 338—341.
Ramirez, D. R., Wehner, T. C., & Miller, C. H. (1988). Growth Analysis and Correlation Studies in Three Cucumber Lines Differing in Plant Habit. HortScience. 23(1):145 - 148
Rao, E.S., Munshi, A.D., & Verma, V.K. (2004). Genetic association and interrelationship of yield and its components in Cucumber (Cucumis sativus L.). Indian Journal of Horticulture. 61(4):315-318.
Rao, C. S., Rao, A. V., & Prasad, A. S. R. (1991). Effect of inadmissible paths in path analysis. Indian J. Agr. Sci. 61, 471—475.
Raza, I., HU, D., Ahmad, A., Li, H., HE, S., Nazir, M. F., ... & Du, X. (2021). Correlation analysis of stem hardness traits with fiber and yield-related traits in core collections of Gossypium hirsutum. Journal of Cotton Research, 4(1), 1-10.
Renner, S. S., Schaefer, H., & Kocyan, A. (2007). Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evolutionary Biology, 7(1), 1-11.
Saikia, J., Shadeque, A., & Bora, G. C. (1995). Genetic studies in cucumber: correlation and path coefficient analysis. Haryana J Hort Sci 24: 126-130
Sallam, B. N., Lu, T., Yu, H., Li, Q., Sarfraz, Z., Iqbal, M. S., ... & Jiang, W. (2021). Productivity Enhancement of Cucumber (Cucumis sativus L.) through Optimized Use of Poultry Manure and Mineral Fertilizers under Greenhouse Cultivation. Horticulturae, 7(8), 256.
Sharma, N.K., & Bhutani, R.D. (2001). Correlation and path analysis studies in bitter gourd (Momordica charantia L.). Haryana Journal of Horticultural Sciences. 30:84-86.
Sharma, S., Kumar, R., & Sharma, H. R. (2017). Studies on Variability, Heritability and Genetic Gain in Cucumber (Cucumis sativus L.). Indian Journal of Ecology. 44(6):829- 833.
Sharma, S., Kumar, R., Chatterjee, S., & Sharma, H. R. (2018). Correlation and path analysis studies for yield and its attributes in cucumber (Cucumis sativus L.). International Journal of Chemical Studies, 6(2), 2045-2048.
Sharma, V. Sharma, L., & Sandhu, K. S. (2020). Cucumber (Cucumis sativus L.); Springer: Singapore, pp. 333–340.
Singh, R.V., Verma, T.S., & Thakur, P.C. (2002). Characters association in cucumber. Haryana J Hort Sci 31: 91-93.
Singh, G., & Singh, M. (1993). Correlation and path analysis in maize under mild-hills of skim. Crop Improvement 20, 222—227.
Singh, K. N., Santoshi, U. S., & Singh, J. B. (1985). Path coefficient study in pea {Pisum sativum L.). Indian J. Genet. 49, 499—504.
Solanki S.S., & Seth, J.N. (1980). Correlation studies in cucumber (Cucumis sativus L.). Vegetable Sci 7: 94-101.
Solanki, S.S., & Shah, A. (1989) Path analysis of fruit yield components in cucumber. Progressive Horticulture 21:322-225.
Soleimani, A., Valizadeh, M., Darvishzadeh, R., & Alipour, H. (2017). Evaluation of Yield and yield component of spring barley genotypes under late-season drought stress. Journal of Crop Breeding, 9(23), 105-116.
Tatlioglu, T. (1993). Cucumber (Cucumis sativus L.). pp. 197-233. In: genetic improvement of vegetable crops. Kalloo, G. and B.O. Beorgh (eds.). Pergamon Press, Oxford.
Ullah, M. Z., Hasan, M. J., Chowdhury, A. Z. M. K. A., Saki, A. I., & Rahman, A. H. M. A. (2012). Genetic variability and correlation in exotic cucumber (Cucumis sativus L.) varieties. Bangladesh Journal of Plant Breeding and Genetics, 25(1), 17-23.
Verma, S. (2003) Genetic variability and correlation studies in cucumber (Cucumis sativus L.). M.Sc. Thesis, Dr. Y S Parmar University of Horticulture and Forestry, Nauni, Solan.
Wright, S. (1921). Correlation and causation. J. Agric. Res. 20, 557— 585.
Yang, Y. (1981). A simple method for measuring the area of cucumber leaves, Liaoning Agricultural Sciences. (1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Basheer Noman Sallam, Isam Al-madhag, Sayed Hussein Abdelgalil, Mansour Hasan Al-Doubibi, Hasan Abdeljabbar Aldobai, Shareif Hammad Hussin
This work is licensed under a Creative Commons Attribution 4.0 International License.